Generalized Dynkin diagrams and root systems and their folding

نویسنده

  • Jean-Bernard Zuber
چکیده

Graphs which generalize the simple or affine Dynkin diagrams are introduced. Each diagram defines a bilinear form on a root system and thus a reflection group. We present some properties of these groups and of their natural “Coxeter element”. The folding of these graphs and groups is also discussed, using the theory of C-algebras.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Dynkin Diagrams and Root Systems and Their Folding Generalized Dynkin Diagrams and Root Systems and Their Folding

Graphs which generalize the simple or aane Dynkin diagrams are introduced. Each diagram deenes a bilinear form on a root system and thus a reeection group. We present some properties of these groups and of their natural \Coxeter element". The folding of these graphs and groups is also discussed, using the theory of C-algebras. Abstract Graphs which generalize the simple or aane Dynkin diagrams ...

متن کامل

Root systems and generalized associahedra

Contents Root systems and generalized associahedra 1 Root systems and generalized associahedra 3 Lecture 1. Reflections and roots 5 1.1. The pentagon recurrence 5 1.2. Reflection groups 6 1.3. Symmetries of regular polytopes 8 1.4. Root systems 11 1.5. Root systems of types A, B, C, and D 13 Lecture 2. Dynkin diagrams and Coxeter groups 15 2.1. Finite type classification 15 2.2. Coxeter groups ...

متن کامل

Hyperbolic Kac–moody Superalgebras

We present a classification of the hyperbolic Kac–Moody (HKM) superalgebras. The HKM superalgebras of rank r ≥ 3 are finite in number (213) and limited in rank (6). The Dynkin–Kac diagrams and the corresponding simple root systems are determined. We also discuss a class of singular sub(super)algebras obtained by a folding procedure. MSC number: 17B65, 17B67 LAPTH-1068/04 DSF-TH-28/04 math-ph/04...

متن کامل

Dynkin Diagrams and Integrable Models Based on Lie Superalgebras

An analysis is given of the structure of a general two-dimensional Toda field theory involving bosons and fermions which is defined in terms of a set of simple roots for a Lie superalgebra. It is shown that a simple root system for a superalgebra has two natural bosonic root systems associated with it which can be found very simply using Dynkin diagrams; the construction is closely related to t...

متن کامل

Weyl Group Orbits on Kac-moody Root Systems

Let D be a Dynkin diagram, let Π = {α1, . . . , αl} be the simple roots of the corresponding Kac-Moody root system and let W denote the Weyl group. We show that for i 6= j, the simple roots αi and αj are in the same W -orbit if and only if vertices i and j in the Dynkin diagram corresponding to αi and αj are connected by a path consisting only of single edges. It follows that the disjoint orbit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997